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I Introduction state and an input into an action based on the infor-
mation stored in the internal state. The different RL

Reinforcement learning (RL) has recently grown in pop- algorithms vary in their definitions of U and F.
ularity as the learning methodology of choice in the situ-
ated agent community. RL is appealing because it allows The above framework assumes that, at each time step,
the agent to adapt to its environment as it gains infor- the agent receives immediate reinforcement, the corn-
mation over time. It is particularly well suited for action plete information about the value of the last action it
learning, which is the main concern in control of situated took. In the general case, reinforcement can be arbi-
agents. trauily delayed, and the problem of assigning reward or

However, reinforcement learning suffers from a num- punishment to a state based on delayed reinforcement is
ber of problems which are in conflict with the goals of ter tp l credit assitmmenL The first statement
situated agent control. This paper analyzes the suitabil- of the problem is due to [Samuel 59), whose checkers-

ity of the general approach by using an in depth com- learning program dealt with deciding which moves to

parison of two RL methods: Q-learning, introduced by reward for eventually leading to "a triple jump."

Watkins [Watkins 89] and the classifier system (CS) Temporal credit can be assigned in two ways: either

Bucket Brigade, introduced by Holland [Holland 85]. the reward is appropriated to all of the state-action pairs

The first part of the paper introduces and compares the after it is received, or an expected value of the future re-

two methods. The second part of the paper discuss the ward is calculated and maintained incrementally. The

properties of reinforcement learning, as demonstrated by latter approach leads to a class of delayed reinforce-
the example algorithms, their weaknesses, and their role ment algorithms termed temporal difference (TD) meth-
within the space of various learning approaches. ods which assign credit locally based on the difference

between temporally successive predictions [Sutton 88).

2 A Definition of Reinforcement Both Q-learning and the Bucket Brigade are instances
Learning of TD.

While temporal credit assignment deals with propa-

Reinforcement learning (RL) addresses the problem of gating reward backward in time, structural credit as-
learning a mapping (also called a policy or action map) aignment deals with propagating the reward across sim-
between all of the states the system can be in and all of ilar states in order to couple them with similar actions.
the actions it can execute using the reward and punish- All RL approaches rely on exploring the complete state
nient received from the world. The goal is for the agent space, which is exponential in the size of the input vec-
to learn to select the right action in each state. The in- tor. Consequently, input generalization, the ability to
puts to the learner are the state of the world and the collapse similar input states together, is critical in mak-
reinforcement signal, and its outputs are actions. Per- ing the approach computationally feasible.
fect state information is assumed. The problem is to Specific methods for dealing with both temporal and
find a function which closely enough approximates the structural credit assignment will be described and ana-
mapping between all of the states the agent can perceive, lyzed in subsequent sections.
and all of the actions it can take. The method is some
form of search of the space of possible functions. RL 3 Q-learning
algorithms have been used to learn tasks ranging from
pushing a box without getting stuck to balanced walking Q-learning is a reinforcement learning algorithm based
and navigating through a mare. on delayed reinforcement [Watkins 89]. The goal of

The following is the general form of an RL algorithm the algorithm is to, at each time step, maximize Q(s, a),
[Kaelbling 90]: the expected discounted reward of taking action a in the

1. Initialize the learner's internal state I to 10. input state s. The algorithm maintains and updates a

2. Do Forever: table of Q values, one for each state-action combination.
a. Observe the current world state s. The utility E of any state is the maximum Q value of
b. Choose an action a = F(l,s) all actions that can be taken in that state. The Q value

using the evaluation function F. of doing an action in a state is defined as the sum of
c. Execute action a. the immediate reward r and the utility E(s') of the next
d. Let r be the immediate reward for state j' according to the state transition function T, dis-

executing a in world state s. counted by the parameter -f.
e. Update the internal state I = U(1,s,a,r) Formally:

using the update function U. s' - T(s,a) , !c. r /
E(s) = max, Q(s, a) . ,.

The internal state, I, encodes the information the learn- Q(s, a) =r + 7 E(s'), 0 < "r < 1 * ,

ing algorithm saves about the world, usually in the form
of a table maintaining state and action data. The up- Q values are updated by the following rule:.'. .. :,a-.
date function U adjusts the current state based on the
received reinforcement, and maps the current internal Q(s,a) .- Q(s,a) +- 3(r + -yE(s') - Q(s,a))
state, input, action, and reinforcement into a new inter- 0 < 3 !S 1
nal state. The evaluation function F maps an internal - i--- . i:- r

Dist ..tclai

D T T C rC 7f : U f - .iT, \ I



An RL algorithm using Q-learning has the following an adaptive production rule system consisting of a fixed
form: number of condition-action pairs called classifiers [Hol-

1. Initialize all Q(s, a); select so. land 86]. The conditions are encoded as fixed-length

2. Do Forever: bit strings over the alphabet {0,1, #}, where # is the

a. Observe the current world state s. default or "don't care" symbol. The action of a classifier

b. Choose an action a that maximizes Q(,, a). consists of posting its message to a global board, which

c. Execute action a. may result in an action to be performed in the world. At

d. Let r be the immediate reward for each time step, the messages on the board are matched
executing a in state s, to the conditions of all classifiers in parallel, and all sat-

e. Update Q(s, a) according to the rule above. isfied classifiers make bids to post their messages to the
Let the new state be a ' t- T(s, a). board next. The highest bidders win and their messages

are posted.

Classifier systems perform two types of learning: what
The key drawbacks of Q-learning are its sensitivity classifiers to have (classifier generation) and what clas-

to the parameter values and the reinforcement function, sifiers to activate (classifier reinforcement). Genetic al-
and its time and space complexity mandated by the state gorithmr are a class of methods for classifier generation.
space and the Q table which must be maintained. They employ mutation and crossover on the classifier

The choice of 6 and -1, the key parameters in Q- population in order to, over time, evolve increasingly
learning, affects the efficiency of the learner. P3 deter- more "fit" classifiers. Widely discussed in the literature
mines the learning rate; 3 = 1 results in an update rule (e.g. [Goldberg 89]Goldberg85), genetic algorithms
which disregards all history accumulated in the current will not be addressed here. Instead, we will concen-
Q value. It resets Q to the current sum of the received trate on classifier reinforcement, the process of assigning
and expected reward at every time step, which usually strengths to classifiers based on the reward they receive
causes the algorithm to oscillate. over time.

-' is the discount factor for future reward. Ideally, y
should be as close to 1 as possible so that the relevance 4.1 The Bucket Brigade Algorithm
of future reward is maximized. In a deterministic world, The Bucket Brigade is a temporal differencing reinforce-
"I can be set to 1, but in the general case two algorithms ment learning algorithm for propagating reward down a
with -y = 1 cannot be compared since, in the limit, the chain of classifiers. Whenever reward is received, it is di-
expected future reinforcement of both will go to oo. vided among the classifiers whose firing enabled it. Since

The initial Q values can affect the speed of conver- reward is not received at every time step, the strength of
gence. Intuitively, if the table is initialized close to the a classifier is adjusted based on its "distance" from the
optimal policy, this will speed up the learning process. reward. The closer the classifier in the chain to the re-
Of course, the optimal Q values are not known a pri- ward, the more strength it receives. The classifiers whose
ori. If initialized to 0 in a problem whose optimal policy firing was immediately followed by reinforcement divide
has positive final Q values, the algorithm will converge the reward. Next, the classifiers that enabled them re-
to the first positive value, never exploring other possi- ceive a smaller share of the reward, and so on down the
bilities [Kaelbling 90]. This can be remedied by occa- chain.
sionally performing a random action to guarantee that Initially, all classifiers are assigned equal strength S.
the entire action space is eventually explored. A better When a classifier C matches a message on the board, it
solution is to initialize the Q values to be higher than posts a bid B proportional to its strength and its speci-
their anticipated optimal values and gradually decrease ficity. The specificity H of a classifier is the ratio be-
theni. tween the number of specified (non-#) bits and the to-

Q-learning is sensitive to the coupling between the ini- tal number of bits in the classifier's condition. If C wins
tial Q values and the reinforcement function. If the func- the bidding, it gets to post a message to the board next,
tion is positive and the table is initialized to values ex- and its strength is decreased by the magnitude of its bid.
ceeding the optimal policy, the system will take longer If its message causes an external action, its strength is
to converge than if the reinforcement function contains increased by a portion of the received reinforcement r.
some negative signals. Besides by immediate reinforcement, a classifier's

Finally, the convergence of Q-learning requires a large strength is increased by the bids of its successors. If
number of trials, i.e. the algorithm relies on an infi- a classifier C posts a message which is, in the next time
nite number of visits to the same state (for the proof step, matched by another classifier C', and C' then wins
see [Watkins 80]). This is a key drawback of classical a bid, the strength of C is increased by the amount of
Q-learning: it takes too long to converge for any non- C"s bid. If multiple classifiers contributed to C"s match,
trivially sized input vector. they split the bid evenly.

4 Reinforcement Learning in Classifier Formally:
Systems M(C) = number of messages matched by C

n = condition length in bits
We now turn to another instance of RL which, on the sur- H(C) = (number of non-#'s)/n
face, appears rather different from Q-learning but shares B(C,t) = cH(C)S(C,t), where 0 < c < I
sonme critical similarities. A classifier system (CS) is 2



Classifier strength is updated by the following rule: are more specific, are termed "exceptions" and belong to
a subset of conditions matched by a more general par-

S(C,t + 1) - S(C,t)+r- B(C,t)+B(C',t+I)/M(C') ent. Over time, as more rules are added to the system,
a hierarchy emerges in which increasingly more specific

An RL algorithm using the Bucket Brigade has the fol- rules serve as exceptions to the more general classifiers.
lowing form: Through the bidding system, the more general rules are
I. Initialize all S(C); select some C7 and post its less likely to be correct, causing the formation of more
message m on the board s specific rules. The system of default hierarchies allows a
2. Do Forever: CS to learn incrementally.

For each message m on the board: An alternative to emergent hierarchies is to categorize
a. Match m to all classifiers, the states by hand. [Wilson 87] suggests such as ap-
a. Cmratch m proach. Although no general method for constructing a
select the winners. hierarchy is given, the more domain specific knowledge

c. Post the winners' messages 7n,,,,. on the board. is employed the more useful the hierarchy structure can

d. Let ? be the immediate reward for posting mn,,.. be made.

e. Update S(C) according to the rule above. 5 Q-Iearning vs. the Bucket Brigade
4.2 Long Classifier Chains Reinforcement learning is a form of gradient descent (orTypical for production rule systems, the number of rule hill climbing) in parameter space. Specifically, the goal
firings (or classifier activation) required to connect an of RL algorithms is to minimize the parameter error,
input and an output of a classifier system can be un- i.e. to maximize received reinforcement over time. Both
bounded [Kaelbling 90]. The longer the classifier se- Q-learning and the Bucket Brigade are gradient descent
quence, the longer it takes to update the strengths of the strategies. They both perform temporal and structural
early classifiers, i.e. the more times the system must go credit assignment by keeping track of combinations ofthrough the same classifier sequence. This makes Bucket states and actions. Both perform search in the spaceBrigade systems slow to adapt to changes in the environ- of "strength" functions mapping states to actions. In
ment. order to compare their performance, we next introduce

In order to speed up learning, [Holland 85] suggests a special case of the standard Bucket Brigade algorithm.
the use of a "bridging" or "epoch marking" classifier that Classifier systems couple two types of learning: rein-
is activated by the first classifier in a sequence, and re- forcement learning and genetic learning. The reinforce-
mains active until the end of the sequence when exter-
nal reinforcement is received. At this time, the epoch ment learning (Bucket Brigade) orders the classifiers bymarkr rceies lage moun ofreiforemet. hen strength S. The genetic learning discards the weakest
marker receives a large amount of reinforcement. When of the classifiers, and generates new ones by applyingthe chain is activated again, the epoch marker passes mutation and crossover operations on the strongest. In
some of its strength directly to the first classifier in the order to compare Bucket Brigade to Q-learning, the re-
sequence. Since its strength is high, the fraction it passes inforcement portion of the CS needs to be isolated, so
on to the front of the chain significantly upgrades the the genetic portion is removed. However, the purpose
strength of the first classifier. This speeds up reward of the reinforcement part of CS is to prov;de strengths
propagation from a long chain to a single step. for the genetic learner. Since classifiers now cannot beClassifier sequences can be divided into two main added and removed from the system, they must all betypes: reflez and non-reflez. Reflex sequences are simple supplied initially. The system is init;alized with a set of
chains in which each of the classifiers is activated solely classifiers C(a,a) such that a is ti'. condition or the n-
by the message of its predecessor. Non-reflex sequences bit input state, and a is the actison. Consequently, there
contain classifiers which are activated by more than one is a t tala, a ll o which arefully spec-
predecessor, i.e. more than one condition matches the is a total of 2"Jal classifiers, all of which are fully spec-
posted message. [Riolo 87] shows that strengths of non- ified. Thus, #'s are eliminated, and P, the measure of
reflex classifiers fall off exponentially with the length of specificity of a classifier, is the same for all C's, so the
the chain. fie gives experimental evidence that the use P term is dropped from the bid equation.
of bridging classifiers greatly expedites strength learning Q-learning and the Bucket Brigade both deal with the
orin g othreflassifiersnreatlyexpsedices. sproblem of propagating reward down a chain of states.
in both reflex and non-reflex sequences. The key difference is that Q-learning uses the maximum

4.3 Default Hierarchies discounted future reward, whereas the Bucket Brigade

The classifier system solution to decreasing the size of computes the current reward, and then propagates it
to the previous state. The following formalism allowsthe state space is by categorizing states into abstrac- for implementing Q's maximization within the Bucket

tion hierarchies. The categorization emerges from the Brimpde:

presence of #, the "don't care" symbol in the classifier
condition alphabet which allows for different levels of
rule specificity in the system. The more #'s a classifier C = (s,a) where s is a state and a is an action.
contains, the more general it is (e.g. (1 0 #) is more ICI = 2"Ial and VC[P(C) = 1]
general than (1 0 1)), and the more conditions it will S(s,a,f + I) = S(s,a,t) + r - B(s,a,t)
match. The rules which match the same conditiors and (SC) = S(C) + B(C') where C' - T(C)



0e"- Vo!w." by 90 degrees), all of which can be tried in all states.1 a The state transition function is defined so that the prob-
8?" 8 "2 - . 3 lem can be visualized as two-dimensional navigation in a

5 -3 -0. 5 9 3" -3 2 6 "1 •4 row of four tiles, each of which contains four perceptual
states. Attempting an action against a boundary does

3 'S 3 3 7 , - 0 4 8 i2 " not change the state. Figure I illustrates the task and

26 2 1the state transition function.
Action Selection: In both algorithms, actions were

selected so as to maximize the Q or S value. In the goal
state, a random action was selected in order to force the

0 4 a 12learner to escape the potential well which would keeD) it
o ,stuck at the goal where both Q (or S) and the received

3 1 1 4-t 7 6- ,5 1 9 I I reinforcement are maxi-ised. In order to converge to the4 4 4 4 " r optimal policy, the agent must explore the entire state
2 1 space, rather than stay at the goal once it reaches it. It

is not enough to select a random action with some small
probability r. Unless r is relatively large, the accumu-

Figure 1: The learning task consists of 16 states, one of lated probability of the agent escaping the potential welU
which is the goal. In each state three actions are possible: is too small to allow for learning the policy in a reason-
move forward, turn left, and turn right. Attempting an able number of trials.
action against a boundary does not change the state. Table Update: In order to propagate the strength
The shown state transition function implements simple values for each state-action combination, the entries in
motion so the task can be visualized as two-dimensional the table must be updated in one of two ways. Either a
navigation, state is updated as it is visited by the agent (thi, is the

implementation we chose), or the changes are propagated
through the table for a chosen number of states at each
time step. For example, [Mahadevan and Connell

CS(Crt) if C(t) =Max. S(sIa,t) 90] uses a five-step update process. The later solution
B(s, a, ) 0 othrif speeds up the learning by a constant factor. Even if all0otherwise of the states in the table are updated at each time step,

At each time step, the current classifier C'(s,a) re- the agent can still get stuck at the goal, illustrating that
ceives the immediate reinforcement, and pays the bid the update function is not related to the potential well
proportional to the strength of the best action to be problem.
taken from that state, i.e. the maximum strength clas- State Transition: The following state transition
sifier that matches the current state s. This is the key function was used:
change: instead of paying a bid proportional to its own I 0.9 if T(z) = y
strength S(s, a,t), C' pays proportional to the strongest p(T(z - =y 0.1 otherwise
of the classifiers max. S(,,a,t) that match the current
state. In the same time step, the predecessor C, whose A random state transition was selected 10% of the time.
message was matched by the current classifier C', re- The algorithms were tested on the same problem,
ceives the value of C"s bid. the same optimal policy, two different parameter values,

This special case of the Bucket Brigade (SBB) imple- and three different reinforcement functions. The data
ments Q-learning in two steps. While Q-learning up- plots show individual runs of the learning algorithms as
dates the Q value of the current state based on the max- crosses. The y-axis in each plot indicates the number of
imum of the next state, SBB updates the previous state time steps to convergence to the optimal policy, while the
with the maximum of the current state. x-axis shows the different values of the parameters being

SBB implements reflex sequences. Instead of bidding, tested. For each set of runs of an algorithm with particu-
the next action is selected so as to maximize the received lar parameter settings, the mean number of time steps to
reward (i.e. the one which uses a classifier with the most convergence is indicated with a bullet, and the standard
strength). Only one classifier is active at a time, unlike deviation is shown with a vertical line. The algorithms
standard CS in which multiple classifier can compete in showed sensitivity to the randomness inherent in both
parallel. Furthermore, the current state receives the re- of the learning rules. This sensitivity was manifested by
inforcement and passes it back to the previous state, so large standard deviations in almost all experiments.
the bid is not shared but goes straight to the predecessor Q-learning Performance: Figure 2 illustrates the
in the action chain. performances of Q-learning using three different initial

values for the Q table, while figure 3 shows its perfor-
5.1 An Example mance on two different initial states. The performance of
The following learning problem was used for comparing the algorithm is not significantly affected by either of the
Q-learning and SBB. The world consists of 16 states, one parameters. Although the measured performance varies
of which is the goal, and three possible actions (going in both the mean and the standard deviation, the varia-
forward, turning left by 90 degrees, and turning right 4 tion is not significant compared to the average variance
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N X. no significant dependence on this parameter. Figure 8X illustrates the algorithm's sensitivity to the value of c,
I Z m oft *I the fraction of the received strength that is propagated

bad0Qvikm to the previous classifier. The larger value ofc increases
the mean convergence time by over an order of magni-

Figure 2: The graph illustrates the performance of Qn tude. The higher theas the oa te more weight is given

learning given three different initial values for the Q ta- to each trial, causing the algorithm to rely on the "local"
ble. The smaller of the values was in range of the optimal decision iad oscillate around the optimal policy before

policy, while the other exceeded it. being able to converge on it.
Comparison: Both algorith sensitims were insensitive to

initial Q and S values and start states, and sensitive
between individual trials over a large number of runs. to y and c, the parameters weighting thvalue of each
Figure 4 illustrates the algorithm's apparent insensitiv- time step. -y and c can be viewed as duals of each other.
ity to s Tall changes in the learning rate parameter .. A high value of c, puts more importance on future tri-
As shown in figure 5, Q-learning is very sensitive to the a s. Similarly, as low value of c decreases the weight of
value of sl, the futhe ureward discount factor. This p- the immediate S values, effectively optimalicy befmpor-
rameter determines how much influence future reward tance of future reward. The relative convergence times
will have on the current state. In deterministic worlds, for Q-learning and Bucket Brigade were comparable for
such as the one used here, it is useful to set n close to I in analogous scaling of those two parameters.
order mxistmite the value of future information at each In the shown trials, both algorithms were tested on a
time step. Consequently, the higher valued reinforcement function with small variance
the learning. (r E i-s,0,51), shown on the top of figure 9. When

SBB Performance: Figure 6 illustrates the perfor- tested on an impulse function ( c E ai,3000t) shown on
m tce variation for two different initial S table vrluesw the bottom of figure 9, the performance of both algo-
The smaller of the values was in the range of the optimal rithms declined by several orders of magnitude. How-
policyr so a few of the initial S values were equal to their ever, ou w experiments demonstrated thms we e standard
target values. Not surprisingly, this resulted in some- classifier system configuration of the Bucket Brigade al-
what faster mean convergence time and a significantly gorithm favors the impulse reinforcement function.

smaller standard deviation. However, in general it is not Finally, figure 10 comparses the performance of Q-
possible to have a good a priori estimate of the opti- 5 learning and the SBB algorithm using the same state
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Figure 4: The graph plots the performance of Q-learning Figure 5: The graph illustrates the performance of Q-
with two different values of 0, the learning rate. learning on two different values of -y, the expected future

reward discount factor.

space, the same initial state and initial values for the Q 6 Input Generalization
and S tables, dual values of -f and c (-f = 0.9, c = 0.1),
and the same reinforcement function (3-valued). On the Our simple example of the two RL algorithms demon-
shown problem , the special case of the Bucket Brigade strates that, even in a 16-stae world, the number of
outperforms Q-learning by approximately an order of trials to convergence is prohibitively large. Indeed, the
mag~nitude in the number of time steps required for con. exponential relationship between the size of the input
vergence to the optimal policy. However, further experi- vector and the size of the state space is a key problem
mentation showed that the use of even a slightly modified in reinforcement learning. It introduces both temporal
reinforcement function (e.g. scaling the function shown and spatial constraints on the size of the learning prob-
in figure 9 by one to (r. E (0, 1, 61)) reversed the perfor- lems that can be addressed. Specifically, Q-learning is
mance results. a table-based scheme, which necessitates keeping statis-

The two algorithms need to be tested on a much larger tics about all of the states, which results in a tremen-
number of trials and on different learning problems be- dous memory requirement. Additionally, the larger the
fore conclusions can be made about their performance state space, the slower the system will be in converging
differences. Further, a characterization of the parameter to the desired policy. Q-learning requires visiting all of
interaction is needed for proper analysis. But observa- the states infinitely many times which, for most realistic
tion of the data alone illustrates the algorithms' similar, problems, takes too long, even in simulation, and unre-
and simtilarly uncharacterised, sensitivity to the learning alistically long if the experiments are performed in the
parameters and to the unavoidable randomness inherent physical world. Finally, the larger the ratio between the
in the approach., number of" states and the reinforcement, the slower the
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Figure 6: The graph illustrates the performance of the Figure 7: The graph shows the performance of the
Bucket Brigade with different initial values in the S table. Bucket Brigade algorithm on three different initial

states, one of them the goal state.

learning will be. Sparse reinforcement aggravates the de-
layed reinforcement problem and increases the number is found to be relevant, the state space is split into two
of trials required for the system to discover the correct subspaces, one with that bit on, and the other with it
policy. Pruning the state space by generalizing similar off. In contrast, the Mahadevan-Connell method starts
input states is one of the key methods for improving per- with a fully differentiated, specific set of all states, and
formance of table-driven RL approaches. consolidates them based on similarity statistics accumu-

Human programmers are excellent at generalisation. lated over time. Both processes produce state space trees
The reason why it is much easier and faster, even for which are sufficiently differentiated but smaller than the
complex tasks, to hand code a behavior than to learn it, fully exponential space.
is that learning considers the entire state space of the The default hierarchies of the CS paradigm are also a
problem whereas the human designer prunes it very ef- means of input generalization. Each instance of the #
fectively. Usually, the problem of exponential state space symbol allows for clustering two states into one, with the
is bypassed by a clever ordering of the rules, careful ar- flexible grouping potential of full generality (all #'s) to
bitration, and default conditions. None of these options full specificity (all non-#'s). Default hierarchies organize
are available in current RL approaches. the specific rule instances in a system, and speed up the

[Chapman and Kaelbling 91) and [Mahadevan learning process, as previously described. If a CS starts
and Connel 901 present complementary approaches to with a single completely general classifier, it will gener-
input generalization. The Chapman-Kaelbling approach ate more specific rules over time. These rules will be
starts with the most general solution (a single, most gen- grouped into a default hierarchy based on the relevance
eral state) and splits it iteratively, based on statistics of individual bits which are changed from #'s to specific
accumulated over time. When a bit in a state vector values. This process is neatly analogous to the [Chap-
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Figure 9: The top graph shows the 3-valued reinforce-

x ment function used for testing the two learning algo-
rithms. The bottom graph shows the impulse function
which worked well with the standard Bucket Brigade but
significantly slowed down both Q-learning and SBB.

N
The input generalization problem is also addressed by

the connectionist literature [Hinton 90]. A key dif-
ference between connectionist approaches and the RL

C. , ~ paradigm is that while RL schemes can be entirely
semantics-free and statistical, the generalisation crite-

cu0.I cu03 ria are hand coded and therefore understood. In the
Figure 8: The performance of Bucket Brigade with two connectionist case, the representations generated by the
different values of c, the bid scaling parameter. The networks are not meaningful or usable for the designer.
larger value of c = 0.5 slows the learning down by more Furthermore, they cannot be debugged if the general-
than an order of magnitude. ization process fails; and the only solution is to tune

the various parameters until the right generalization is
found. The key difference, then, is that the general-

man and Kaelbling 91] method of bit splitting which isation in RL (both in Q-learning and CS) is built in,
also begins with the most general state and subdivides whereas in connectionist approaches it is a result of the
and :lusters the more specific states. The CS approach network dynamics.
is a more powerful extension, since it eliminates the need Paradoxically, it is precisely the unwieldy, fully-
for individual bit relevance. The process of generating exponential quality of the RL state spaces that gives
more specific classifiers implements a power set of the them one of their main positive properties: asymptotic
state space. However, it does so incrementally thus never completeness. While hand coded reactive policies take
needing to keep around a large number of classifiers, as advantage of the cleverness of the designer, they are al-
would a power set implementation of any bit-relevance most never provably complete. Most irrelevant input
algorithm akin to [Chapman and Kaelbling 911. states are easily eliminated, but potentially useful ones

The genetic component of the classifier system, which can be overlooked. Complete state spaces, on the other
generates new rules and eliminates weak ones, implic- hand, guarantee that the agent will, given sufficient time
itly implements the statistics that are kept explicitly in and sufficiently rich reinforcement, produce a provably
(Chapman and Kaelbling 01]. While the latter must complete policy. However, this quality is of little use if
apply some statistical analysis of the gathered data, CS the world is dynamic or the state space is large.
simply works by trial and error until the proper popu-
lation of appropriate specificity classifiers is evolved. It 6.1 Mod2larisation
would be interesting to empirically compare the perfor- The problem of learning the optimal policy can be cast
mance of the two methods on a common problem. as searching for paths in the action space which con-



box, pushing a box, or getting unstuck. The reinforce-
ment depends on which of the subgoals is being pursued,
but it is available more frequently, since the distance be-
tween any state and one of the subgoals, is decreased.
Not surprisingly, when tested in both simulation and on

- the real robot, the modular approach far outperforms the
monolithic design in which the robot is only rewarded for
actually maintaining contact with and pushing a box.

It is unlikely that any universal strategy for dividing
X the task into modules exists. However, it would be use-

ful to derive a few principles for task decomposition for
Sparticular classes of learning problems. Another inter-

esting question is whether the modularisation of a task is
dependent on the learning algorithm, i.e. whether there
exists some "optimal" set of modules which is indepen-
dent of the way the modules are learned, but is tied
instead to the semantic definition of the problem.

2 7 Built in Structure and Knowledge
K It is often said that "one cannot learn anything un-

less one almost knows it already" [Winston 84]. The
tradeoff between the type and amount of built in versus

low. learned information is the key issue in machine learn-
N ing. The less structure is built in, the more is left to

the algorithm to discover. Minimizing built in structure
in order to ease the programming task and reduce the
learning bias often results in over-specificity and nar-
rowness. It makes the learning process slower, the space

i and time complexity larger, and the result more task-
specific. Neural networks are an example of this type
of data-driven learning, biased only by the structure of
the network and the training set. These methods have
been shown to be sensitive to initial conditions [Kolen
and Pollack 90], very specific, and of limited ability to
generalize (Hinton 90].

On the other end of the data-knowledge spectrum lie
Figure 10: A plot comparing the performance of Q_ knowledge-based or knowledge-driven learning schemes.
learning (on the left) and the SBB algorithm (on the They employ some form of a domain theory in order
right) on the same learning problem. to minimise the amount of deduction left to the agent,

as well as the amount of new information needed from
the world. Explanation based learning (EBL) [Dejong
and Mooney 86] and explanation based generalization

nect the current state with the goal. The longer the dis- (EBG) [Mitchell et &1 86], [Mitchell et al 891 be-
tance between a state and the goal, the longer it takes long in this category. These approaches are constrained
to learn the policy or the path. This is why policies for by the structure and amount of information provided by
large state spaces in Q-learning, and long classifier se- the domain theory, and rely on its completeness and ac-
quences in the Bucket Brigade, both take a long time to curacy. These properties have earned them the label of
be learned. Breaking the problem into modules or sub- "strong" methods as compared with "weak" connection-
problems effectively shortens the distance between the ist approaches [Hinton 90).
reinforcement signal and the individual actions. Conse- Reinforcement learning is situated between the two ex-
quently, the length of action sequences to be learned is tremes of the spectrum, much closer to the data-driven
decreased. However, breaking the problem up into an end. Unlike both the connectionist approaches and EBL-
appropriate set of modules requires domain information style methods, which require an explicit teacher, RL is
about the particular learning task. unsupervised. Consequently, it is well suited for adap-

[Mahadevan and Conneli 90] give an example of tive agents acting in changing, possibly nondeterministic
breaking up a box pushing task into three modules, effec- worlds. Eliminating the teacher removes any bias that
tively introducing three subgoals into the learning task. might be present in the training set. On the other hand,
The three are carefully chosen to be orthogonal and non- RL approaches rely on the environment to encode and
conflicting, based on the particular task. The robot's manifest an observable and learnable mapping between
behavior repertoire is designed so that whatever state the states the agent can perceive and the actions it can
it is in, it is pursuing one of the subgoals: finding a perform. The dependence on the environment rather



ft. connectionist classifier systems using the Bucket Brigade. The princi-
methods pal weaknesses of RL were discussed: the large time and

space complexity, input generalization, and the lack of
built in structure.

E A main problem with RL approaches is their "unstruc-T. tured" utilization of the inputs. Since no domain in-
formation is used, the entire space of state-action pairs
"must be explored. Cousequently, these algorithms scale
poorly with the number of input bits. However, a wealth

[EIG of sensory information is a key to intelligence, so any fu-
ture directions in learning must be helped, rather than

40- hurt, by increased amounts of information.

amount of supervision Learning can serve at least two different purposes in
a situated agent. It can ease the prob-ammers job by
having the agent learn its own behaviors. It can also

data-driven keep the agent adaptive to a changing world. So far, RL
methods has not fulfilled either of those roles. Learning is a poor

substitute for programming any real system because it
is overwhelmingly complex and slow. Additionally, not

inenough is known about the internal dynamics of the pa-
._5 rameter interaction, which demands a lot of parameter

tuning. It is not yet clear that tuning learning parame-
ters is easier than tuning programming parameters in a

f hand coded nontrivial agent.

knowledge-driven The adaptation property of learning agents is indis-
methods putably useful. However, current RL algorithms are
methods_ 0._ very slow to converge to a policy and consequently

n oslow to adapt. Perhaps more importantly, no RL work
amount of built-in knowledge so far has demonstrated the ability to use previously

learned knowledge to speed up the learning of an en-
Figure 11: This figure illustrates the relationship be- tirely new policy. Instead, the agents must either start
tween the amount and type of experimental trials in from scratch, or worse, the current policy may be a detri-
different learning methodologies. The shaded area in- ment to learning the next one. Consequently, it has not
dicates the desirable properties for a learning algorithm, yet been shown that agents using RL can adapt to more

than a single policy.
In spite of its weaknesses, reinforcement learning has

than the training set can be recast as the reliance on the been demonstrated to perform well in certain types of
designer to properly structure the perceptual apparatus tasks and environments. Better understanding those
and the reinforcement function. tasks, attempting a large number 3f versatile experi-

In order to avoid preprocessing the data, RL ap- ments of nontrivial agents, and further characto.rizing
proaches manipulate the "raw" input vector. To es- the real applications of the approach ought to be be the
tablish a correlation between each state and the desired focus of further RL research.
action, the algorithms search through the entire space
of state-action combinations (O(2'" lal)) requiring a large Acknowledgements
number of trials to find the optimal policy. In contrast, I'm grateful to Lynn Stein, Tom K.'gl. and Pattie Maes
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